The Effect of Polymer Surface Modification Via Interfacial Polymerization on Polymer–Protein Interaction
نویسندگان
چکیده
Membrane separation is an important processing technology used for separating food ingredients and fractionating value-added components from food processing byproducts. Long-term performance of polymeric membranes in food protein processing is impeded by the formation of fouled layers on the membrane surface as a result of protein adsorption onto the membrane surface. Surface modification of synthetic membranes, i.e., changing surface characteristics to reduce protein adsorption permanently, is one of the innovative ways of reducing the fouling of membrane surfaces. In this study, surface modification of flat-sheet ultrafiltration membrane, polyethersulfone (PES), was investigated in improving the hydrophilicity of PES surfaces, thereby reducing adsorption of the protein caused by hydrophobic–hydrophobic interaction between the protein and the membrane. Hydrophilic polymer grafting through thinfilm composite using interfacial polymerization was employed to improve the hydrophilicity of the commercial PES membranes. Poly(vinyl alcohol), poly(ethylene glycol), and chitosan were chosen as hydrophilic polymers to graft on PES membrane because of their excellent hydrophilic property. Modified PES membranes were characterized by contact angle, FTIR, XPS, and AFM. Contact angles of modified PES membranes were reduced by 25 to 40% of that of the virgin PES membrane. XPS spectrum supported that the PES membranes were successfully modified by interfacial polymerization. Tapping-mode AFM was used to examine the changes in surface topography of modified PES membranes. The PES membranes modified by interfacial polymerization showed lower roughness (from 1.2 to 2.0 nm) than that of virgin PES membrane (2.1 nm). The results of these instrumental analyses indicated that the PES membranes were successfully enhanced hydrophilically through interfacial polymerization. The protein adsorption on the modified membranes was reduced by 30 to 35% as a result of surface modification of the PES membranes using interfacial polymerization technique. VC 2009 Wiley Periodicals, Inc.* J Appl Polym Sci 112: 1704–1715, 2009
منابع مشابه
Well-defined PE-b-PTFE diblock copolymers via combination of coordination chain transfer polymerization and condensation reaction: Facile preparation and surface modification of polyethylene film
In this paper, a series of well-defined polyethylene-b-polytetrafluoroethylene diblock copolymers (PE–b– PTFEs) were prepared by a coupling reaction of hydroxyl-terminated polyethylene (PE–OH) and isocyanateterminated 1H,1H-perfluoro-1-tetradecanol (PFDO–NCO). PE–OH was prepared by the coordination chain transfer polymerization using 2,6-bis[1-(2,6-diisopropylphenyl)imino ethyl] pyridine iron (...
متن کاملActivator Generated Electron Transfer Combined Atom Transfer Radical Polymerization (AGET-ATRP) for Controlled Grafting Location of Glycidyl Methacrylate on Regenerated Cellulose Ultrafiltration Membranes
This investigation indicates the ability to selectively graft glycidyl methacrylate (GMA) only from the external surface of regenerated cellulose (RC) ultrafiltration (UF) membranes using activator generated electron transfer (AGET) atom transfer radical polymerization (ATRP). This controlled polymerization resulted in epoxy functionalized polymer brush ends. Further reaction of the terminal ep...
متن کاملSynthesis of Polybutadiene Nanoparticles via Emulsion Polymerization: Effect of Reaction Temperature on the Polymer Microstructure, Particle Size and Reaction Kinetics
Polybutadiene nanoparticles were synthesized via batch emulsion polymerization of butadiene in the presence of potassium persulfate, disproportionate rosinate potassium cation and t-dodecyl mercaptane as initiator, emulsifier and chain transfer agent, respectively. Polymerization reaction was performed at different temperatures (60, 70 and 80 °C). Conversion was measured at the various time int...
متن کاملIN SITU SILICA SUPPORTED METALLOCENE CATALYSTS FOR ETHYLENE POLYMERIZATION
Bis(2-R-ind)ZrCl2 (R: H or phenyl) was supported on different types of silica by in situ impregnation method and used for ethylene polymerization. In this method, the step of catalyst loading on support was eliminated and common alkyl aluminum (triisobutylaluminum, TiBA) cocatalyst was used instead of expensive methyl aluminiumoxane (MAO) cocatalyst in the polymerization. The effect of surface ...
متن کاملHyperbranched Polymer Integrated Membrane for the Removal of Arsenic(III) in Water
This work demonstrates the synthesis, characterization and application of a hyperbranched polyethyleneimine/polysulfone (HPEI/PSf) thin fi lm composite (TFC) membrane. The membrane was accessed via an interfacial polymerization of trimesoyl chloride and HPEI. The membrane samples were characterized by Fourier Transform Infrared-Attenuated Total Refl ectance (FTIR-ATR) s...
متن کامل